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Introduction 

With the structural changes in the power industry over the past 10 years, the market price 
of electricity has become the key determinant of resource value.  In the past, resources 
were evaluated based on the cost to serve a specific load.  Today, most resources can be 
viewed as competing against the (wholesale) market, and thus should be evaluated based 
on the market price. 
 
Given this situation, long-run (twenty to thirty year) electricity price forecasting is not an 
academic exercise. These forecasts are absolutely central to many key decisions at power 
companies and to their success.  Decisions must be made regarding assets that may be 
operated for 50 years; regulators require resource plans that extend 20 to 30 years; and 
many electricity and fuel contracts last 20 years or more. 
 
Not only is price forecasting increasing in importance, but decision makers increasingly 
realize that common “single-path,” most-likely estimates are inadequate.  Single-path 
estimates, even when unbiased, provide no information on risk exposure.  Furthermore, 
they provide no help evaluating resources that can be adapted, through operational 
changes and investments, to changes in prices, costs, and other factors.  Risk and 
optionality can only be fully examined with a thorough, quantified picture of future 
uncertainty. 
 
Current and recent industry experience is replete with examples illustrating the 
importance of long-run electricity price forecasting, and the problems created with 
simplistic and/or inaccurate forecasts.  In 2001, the State of California signed over $40 
billion in long-run electric contracts.i  These contracts are now considered so expensive, 
there is considerable effort being devoted to cost allocation, renegotiation, and litigation.  
Throughout the country, plans to build new capacity have been shelved as prices have not 



risen as expected.  In Texas, 32 power projects totaling 17,801 MW have been delayed or 
canceled since 2001ii.  In Mississippi, the 822 MW Choctaw County combined-cycle 
plant was commissioned in July 2003 and mothballed in May 2004 because of low 
wholesale market pricesiii. 
 
The bottom line is that a good long-run probabilistic forecast of electricity prices is 
required to understand the potential value and risks of many investments.  What do we 
mean by a “good” long-run electric price forecast? 

• Accuracy.  This is a self-evident criterion, but it is more complex than generally 
recognized.  Decision makers prefer that a point estimate or the expected value of 
a distribution be closer to what actually occurs rather than farther away.  Decision 
makers prefer narrow bands of uncertainty to wider bands of uncertainty.  
However, accuracy has other important dimensions.  It is important that forecasts 
be unbiased.  The median or middle forecast should be over and under the true 
value in equal proportions.  It is important that forecasts be well calibrated.  By 
calibration, we mean that the probability distribution on future electric prices 
should accurately reflect the true level of uncertainty.  Or, simply stated, the 
variance of the future price should be accurate.  This is essential for valuing either 
financial options or “real” options in the management of a resource. 

• Usefulness.  Decision makers like forecasts that can be used for the widest 
possible range of decisions – both current and future decisions, and both 
investment and operations decisions.  For options analyses, decision makers need 
forecasts that include an estimate of how uncertainty changes as time passes.  
Decision makers also need more than just a number; they need to identify and 
understand the price drivers. 

• Efficiency.  While good price forecasts are very valuable, they can also be costly.  
Of course, decision makers prefer forecasts that cost less, require fewer resources, 
and can be updated more quickly. 

Common Forecasting Practice 

There are four important sources of data that can be used to develop long-run forecasts. 

• Historical electricity market prices; 

• Forwardiv electricity market prices; 

• Results from supply/demand simulation models; and  

• Expert judgments, particularly with respect to future technologies and regulations. 
 
Not surprisingly, considerable effort has been devoted to price forecasting in recent years.  
However, most forecasts suffer because valuable data are not used appropriately or not 
used at all.  There are two common fundamental problems that lead to inferior forecasts. 

1) Forecasters rely almost entirely either on financial data (historical and forward 
prices) or engineering data (simulation model results and expert judgments); they 
do not use both as information sources. 

2) Whatever data sources are used, forecasters focus too much on the past and 
present, basing forecasts on extending existing patterns; they do not fully and 
creatively think about the future. 

These two problems are discussed in more detail below. 



Reliance on Either Financial or Engineering Data 

 
As noted above, many price forecasts can be characterized as either “finance driven” or 
“engineering driven.” 
 
The finance approach usually begins with the choice of a simple model of price 
dynamics.  A number of models are popular, with the Geometric Brownian Motion model 
being the best known.  After choosing a model, model parameters are determined by 
fitting the model to past price data, or to forwards, or to a combination.   
 
The major advantage of forwards is that liquid markets reflect data and analyses from 
many sources, and it is generally believed to be rare that individual analyses can improve 
on these estimates.  Further, forwards reflect both investor price predictions and their 
attitude toward risk.  This helps with the difficult issue of risk adjusting future cash 
flows, but does complicate calculations when spot price estimates are desired.   
 
The major problem with the financial approach is that the markets are not sufficiently 
extensive, mature, and stable to rely on the available data.  Or said another way, there is 
just not enough applicable data to produce accurate long-run forecasts.  Regional 
electricity markets may have only existed for a few years, and/or have been in a state of 
transition during most or all of their existence.  For example, the California crisis of 
2000-2001 dominates Western historical data but may be a unique disruptive event that 
will not be repeated.  Forward markets are similarly limited as they only go out 5 to 7 
years.v Accuracy when these data are projected forward 20 to 30 years is questionable at 
best. 
 
The engineering approach usually begins with the choice of a detailed supply/demand 
simulation model.  A number of models are popular, with FastForward by 
EPRI/Northbridge, MIDAS and ProSym by Global Energy Decisions, IPM by ICF 
Consulting, UPLAN by LCG, and MarketPower and ProMod by New Energy Associates 
all being well known.  Typically, these models contain detailed data on generating plants, 
loads, and the transmission system.  They match supplies to demands and can produce 
hourly, location-specific prices.  The detailed description of the real world found in these 
models provides users with confidence that the results are realistic.  Generally it is 
assumed that if credible 20 or 30 year fuel prices and demands can be provided to the 
models, the models can provide accurate 20 or 30 year price forecasts.   
 
The major problem with the engineering approach is a strong tendency to understate the 
uncertainty in technology, system configuration, fuel prices, and demands.  This results in 
a forecast that anchors on a very narrow range that can be inconsistent with market 
realities.  In general, analyses that consider many uncertainties are discouraged by the 
time and expense of running these models. 
 
The finance and the engineering approaches have contrasting strengths and weaknesses: 

• Finance models reflect true market value, engineering models estimate market 
value; 



• Finance models summarize thousands of diverse opinions and analyses, 
engineering models reflect limited expert opinions and scenarios; 

• Engineering models provide a logic applicable to many time frames and locations, 
finance models are based on limited temporal and regional data. 

Anchoring on the Past and Present 

The second major problem identified above was a lack of focus on the future, an 
underlying assumption of little change.  While often viewed as extremely stable, the 
power industry is actually a dynamic and changing industry.  A few examples illustrate 
the risks of assuming that the future will resemble the immediate past. 

• The history of electric markets is too short to illustrate major shifts; however, 
such shifts can be seen in related commodity markets.  For example, the average 
natural gas price was $1.45/Mcf in the 1970’s and $4.81/Mcf in the 1980’s.  
While prices in the 1990’s were similar to the 1980’s, recent, experience suggests 
that another jump may be occurring. 

• U.S. electric demand grew at a rate of 7.3% per year in the 1960’s.  Growth fell to 
4.2% in the 1970’s.  Growth fell to 2.6% in the 1980’s.vi 

• Figure 1:  Technology Changes Over Time illustrates the radical changes over 
time in the technologies chosen for power generation.  In the 1970’s coal, gas, 
nuclear, and petroleum technologies were all highly competitive.  In the 1980’s, 
the roles of petroleum and gas technologies were dramatically reduced while 
nuclear and coal technologies were close competitors.  Most dramatically, the 
1990’s were completely dominated by gas powered plants.vii 

• Average annual capacity additions in 1970’s; 1980’s; and 1990’s were 
respectively, 29.4 GW/yr; 17.4 GW/yr; and 9.0 GW/yr.  But more startling, 
capacity additions from 1995 to 1999 averaged 7.8 GW/yr; capacity additions 
from 2000 to 2004 averaged 44.5 GW/yr.viii 

Figure 1:  Technology Changes Over Time 
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In each case above, projecting one decade’s trends into the next would have produced 
dramatically incorrect results.  These examples show how blindly projecting current and 
historical data, whether financial or engineering, out 10 or more years is very likely to 
produce flawed estimates.  Instead, attention to the future and a broad examination of 
uncertainty is required.   

Suggested Changes 

We suggest two changes in the common practices of price forecasting: 

• Integrate the financial and engineering approaches, and 

• Focus much more on the future, rather than the past and present. 
Active markets provide the most relevant estimates of prices, but they simply do not 
provide enough data, particularly for long-run 20 or 30 year predictions.  An engineering 
approach is certainly necessary for the long-run, and where markets are not robust may 
be needed in shorter time frames.  The engineering approach needs to focus not on the 
details of the structure of the system today, but on the nature of the changes that will 
occur over the next 20 to 30 years.   

A Compact, Balanced Approach to Long-Run Price Forecasting 

We propose an approach with the following steps: 
1) Structure the forecasting problem and select an appropriate model of electricity 

prices based on that structure; 
2) Gather judgments about the future, especially factors relevant to the long-term 

cost of electricity generation; 
3) Gather historical data, forward data, and simulation results; and  
4) Fit the model to the gathered data. 

 
Below we provide an example of this four-step approach.  The example is based on 
recent projects, but has been modified to rely only on publicly-available data and to 
produce only illustrative results. 

Step1:  Structure the Problem 

We begin by defining the long-term electricity price to be forecast.  For most 
applications, we suggest the average annual price.  Although price variations within a 
year are important for evaluating resources that will be shut down for a significant 
fraction of the year, we model these within-year variations separately.  This modeling 
will not be discussed in this paper.  We define “average annual price” as “spot” prices 
averaged over hours.  For many markets, “spot” prices will be hour-ahead prices.  The 
specification of prices to be forecast is flexible.  It is important that the definition be clear 
and that historic data, forwards, and/or structural-model data must be temporally 
consistent with the forecast.  We must recognize the different characteristics of weekly 
averages versus yearly averages, of day-ahead versus hour-ahead, and so on.  Second, we 
must recognize that forwards are not direct estimates of expected spot prices.ix   
 
Once price is clearly defined, we select a suitable model of price dynamics. There are a 
variety of models one can use.  As noted above, Geometric Brownian Motion is popular, 
particularly for equities.  However, it is a very specific model that has only limited 



applicability to electricity prices.  Instead, a more complex model is required to capture 
three important aspects of electricity price dynamics: 

• Medium-term (year-to-year) volatility,  

• Reversion to a long-run price path, and 

• Uncertainty with respect to the long-run path. 
 
The short-term volatility of electric prices is illustrated in Figure 2: Historical Average 
Yearly Pricesx.   

 
Figure 2: Historical Average Yearly Prices 

 
As this Figure shows, electricity prices can exhibit considerable year-to-year variation, 
and that variation can differ widely among markets. 
 
Strong statistical evidence is not available for reversion of electricity prices to a long-run 
path.  However, most people find the logical argument for reversion very strong and 
related markets, such as coal and natural gas, are generally viewed as exhibiting mean-
reverting behavior.  The argument for reversion is that the underlying price for electricity 
is set by the cost of generation technology and fuels.  Technologies serve as a large scale 
option for the power industry.  In each decade or era, the industry chooses the expected 
lowest cost technology and market prices will tend to a level that will just support this 
technology.  Significant variations from the underlying price will occur due to supply and 
demand imbalances.  But when supply is “short,” prices will rise and encourage new 
resources that will lower prices.  The opposite will occur when supply is “long.”   
 
The statistical evidence for uncertainty in the long-run path is also limited.  Pindyck, 
1999xi examined up to 127 years of data for oil, coal, and gas prices.  He states that “the 
behavior of real energy prices suggests reversion to trend lines with slopes and levels that 
are both shifting continuously and unpredictably over time, …”  Smith and Schwartz, 
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1999xii also suggest a model for commodities, including oil, with uncertainty in the rate 
and level of mean reversion.  This research and our own work suggest that the underlying 
path of electricity prices is uncertain. 
 
The model we suggest is similar to that used by Smith and McCardle, 1999xiii.  In this 
model, the logarithm of prices follows what is known as an “Ornstein-Uhlenbeck” 
process.  The model is defined as follows: 

• π(t) + αt = ln(p(t)), where p(t) is the price at time t and α is an uncertain growth 
rate, 

• π(t) is normally distributed, 

• the mean of π(t) is π' + (π(0) – π')e-κt, and 

• the variance of π(t) is σ2(1 - e-2κt)/2κ.  xiv 
 
The model is not as formidable as it might first appear.  π' + αt is simply the long-run 
path around which prices vary.xv  As suggested above, we believe this is largely 
determined by the cost of building and generating electricity with the most economic new 

technology.  The variance term, σ2(1 - e-2κt)/2κ converges to σ2/2κ as we move into the 
future.  This is more reasonable than the constantly-growing variance of the more 
common Geometric Brownian Motion model.  The (π(0) – π')e-κt term means that if the 
current price, represented by π(0), is away from the long-run path, represented by π', 
there is a force driving future prices back to the long-run path.  Finally, α, the growth in 
the long-run price path, is uncertain.  We typically represent this by a discrete probability 
distribution. 
 
The model requires three parameters and a probability distribution on growth, α.  The 

three parameters are the current point on the price path, π'; the volatility parameter, σ; 
and the reversion parameter, κ.  As noted above, we will estimate these parameters using 
all four sources of data. 

Step 2:  Gather Expert Judgments 

Once the underlying model has been selected, we turn to gathering expert judgment 
regarding the underlying long-run price path.  We need to think carefully and broadly 
about the future, and to recognize the high degree of uncertainty about technology and 
regulation.  Areas of the future that need to be addressed include: 

• Regulation, particularly CO2 limits, credits, or taxes; 

• Fuel prices, particularly for gas; 

• Transmission development, both technology and investment, this will be a 
powerful determinant of regional price differentials; 

• Generation technology, particularly the development of super critical coal, IGCC, 
renewables, and nuclear. 

 
We use facilitated group brainstorming and assessment sessions to gather data.  In these 
sessions, we have three types of activities:  brainstorming with no comments, critical 
discussion, and voting or assessment exercises to quantify values and uncertainties.  
Assembling an organization’s internal experts to exchange ideas about the future 
provides benefits beyond data gathering.  The exchanges help people understand the 



major forces affecting the industry outside their own area of expertise and create a 
broader, more robust view of the future.  Typically, the group will represent such 
functions as forecasting, strategic planning, regulatory affairs, environmental planning, 
marketing/trading, engineering, and management. 
 
Outside the organization, there are a number of sources of technology information. Many 
organizations will have favored sources.  One public source is the Energy Information 
Administration (EIA) “Annual Energy Outlook.”  This contains both technology and fuel 
data.  Table 1:  Advanced Generation Cost Dataxvi provides some key data from this 
source.  All costs are in 2003 dollars. 
 

Table 1:  Advanced Generation Cost Data 

Technology Overnight 

Cost 

($/kW) 

Variable 

O&M 

($/MWh) 

Fixed 

O&M 

($/kW) 

Heat 

Rate 

(Btu/kWh) 

Scrubbed Coal 
New 

1213 4.06 24.36 8600 

IGCC 1402 2.58 34.21 7200 

IGCC w. 
Carbon 
Sequestration 

2006 3.93 40.26 7920 

Advanced CC 1114 2.6 17.60 7493 

Advanced 
Nuclear 

1957 0.44 60.06 10400 

 
In a recent study, we considered fifteen uncertain variables influencing future electricity 
production cost.  These could be roughly placed in three classifications:  1) economic 
variables such as discount and tax rates, 2) market prices for inputs and emissions, and 3) 
technical characteristics such as capital costs and heat rates.  In this recent study, we used 
discrete distributions on these variables, but characterizing them as continuous 
distributions is also possible.   
 
Table 2:  Table 2:  Uncertainties provides a few illustrative uncertainties.  Gas Price is the 
price in 30 years in 2003 dollars.  CO2 Cost could literally be a $/Ton emissions tax, but 
could also be the implied costs of traded credits or other controls.  The transmission adder 
recognizes that coal and nuclear plants are more difficult to locate than gas plants and 
may incur significant costs moving power from production regions to load centers.  The 
nuclear capital costs are construction costs not including financing. 
 

Table 2:  Uncertainties 

Uncertain Variable Low Nominal High 

Gas Price ($/MMBtu) 2.0 4.0 8.0 

CO2 Cost  ($/Ton) 0.0 10.0 50.0 

Transmission Adder for Coal and Nuclear 
($/MWh) 

0.0 2.0 4.0 

Nuclear Capital Cost ($/kW) 1200 1957 2400 



Step 3:  Gather Historical Data, Forward Data, and Simulation Results 

Once we have thought through the long-term scenarios, we turn to more traditional 
sources of near and mid-term data. 
 
Figure 2: Historical Average Yearly Prices above shows typical historical price data from 
CAISO and PJM.  For the calculations below, we use the CAISO data.  There are often 
multiple sources for historic data.  The best sources are those that represent a market 
(trading point or hub) and a time frame (hour-ahead or day-ahead) that would realistically 
be used as a resource.  However, the data may often be from other markets or time 
frames, and statistical or subjective adjustments must be made. 
 

Figure 3:  Forwards and Estimated Spot Prices 
 
Figure 3:  Forwards and Estimated Spot Prices shows three sets of “forward” data:  The 
“Unadjusted” set is typical “raw” forwards data from the market; these are peak period 
forwards. The “Adjusted” set has been modified to represent future average annual spot 
prices rather than current forward prices.  For comparison, we also show expected spot 
prices from a representative supply/demand simulation; this is the “Model” set.  Like the 
historical spot price data, forwards data are selected from a representative market and 
time frame.  Three adjustments are then made to make the forwards data and historic spot 
price data comparable:  1) risk adjustment between forwards and spot prices, 2) prices 
adjusted to 2003 dollars, and 3) prices adjusted from peak period prices to average annual 
prices. 
 
The risk adjustment is the most complex.  The key insight is that forwards incorporate 
market adjustments for risk.  Forward prices should equal the risk-adjusted expected 
value of spot prices.  The simplest form for this risk adjustment is to discount or inflate 
prices by a constant factor each year.  We examined three ways to estimate this factor.   

1) We compared one-year ahead electric forwards to actual spot prices.  Very few 
points were available and the comparison did not show a significant relationship.   
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2) The capital asset pricing model suggests that the adjustment factor should be 
related to stock market value correlation.  We found no significant correlation 
between electric spot prices and the stock market.   

3) Parkinson, 1999xvii looks at the behavior of energy commodities with longer 
histories of forwards trading, specifically, the ratio of the spot price at delivery 
and the forward price of the same contract six months prior to delivery for seven 
oil and gas commodities.  On an annualized basis, forwards provided an excess 
return of 5% to 20% versus a risk-free instrument.  This suggests that forwards 
are lower than non-risk-adjusted spot prices.   

 
Based on this research, we settled on a risk adjustment of 3% per annum from forwards 
to spot prices.  Prices were adjusted to 2003 dollars using the Consumer Price Index, and 
average prices were assumed to be 80% of peak prices. 
 
As noted above, the “Model” line represents expected spot prices from a supply/demand 
simulation model.  Each point is the expected spot price at that time.  We feel that good 
medium-run (5-10 year) projections can be efficiently derived from supply/demand 
simulation models.  The uncertain factors driving prices in this time frame are not so 
diverse as to make use of the larger models inefficient and the power system structure in 
these models is relevant over this time frame.  Uncertainties such as fuel prices, 
allowance prices, plant availability, and demand must be quantified.  Enough scenarios 
and combinations of scenarios must be run to give a full picture of medium-run volatility 
and its drivers.   
 
When both forwards data and supply/demand model data are available, subjective 
judgment guides their use – one, the other, or a blend.  When the two sources differ 
widely, we favor using forwards data unless it is clear that forwards markets are too 
thinly traded to provide reliable data or the data represent markets that are geographically 
or temporally inappropriate.xviii  For this example, we will assume that the forwards 
markets are robust enough to provide meaningful data. 

Step 4:  Fit the Model of Price Dynamics 

Once we have gathered available data from all four sources, we fit the model using that 
data.   
 

Table 3:  Break-Even Electricity Prices (16% IRR) 

Technology Scenario 1 

Gas High 
CO2 High 

Transmission High 
Nuclear Nominal 

($/MWh) 

Scenario 2 

Gas Nominal 
CO2 Nominal 

Transmission Low 
Nuclear Nominal 

 ($/MWh) 

Scenario 3 

Gas Low 
CO2 Low 

Transmission Low 
Nuclear Nominal 

 ($/MWh) 

Advanced CC 103 46 30 

IGCC 72 40 31 

IGCC with 
sequestration 

41 39 37 



Scrubbed Coal 83 45 34 

Nuclear 38 34 34 

 
We use a simple plant economics model to find break-even costs for various types of 
generators and scenarios at a target time in the future.  Table 3:  Break-Even Electricity 
Prices (16% IRR) shows the baseload electricity prices that provide a 16% IRR for 
investments in these technologies under three scenarios based on the uncertainties 
described earlier.  The nuclear technology is lowest cost in Scenario 1 and 2 and 
Advanced CC is lowest cost in Scenario 3. 
 

Figure 4:  Distribution on Prices Supporting New Generation 
 
Simulation of the interactions of many uncertain variables produces many such scenarios 
and a detailed distribution on the lowest price that will support new generation at some 
specified point in the future.  Figure 4:  Distribution on Prices Supporting New 
Generation shows such a probability distribution.  While this curve represents millions of 
potential combinations of technology and business environments, usually we can identify 
informative patterns.  For example, we might see the following pattern in dominant 
uncertainty outcomes and decisions: 

• Low end of curve, low gas prices or a renewable breakthrough, gas turbines or 
renewables.   

• Mid-portion of curve, moderate gas and coal prices, mix of gas and coal 
technologies 

• High-portion of curve, high fuel and emissions costs, nuclear.  
 
We discretize the future price distribution for calculation of the parameters of the 
dynamic price model and to simulate future price paths.  
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We settled on a three branch discretization of long-run (30 years out) prices:  High, $90; 
Nominal, $48; and Low, $30.  We place probabilities of 30%, 40%, and 30% on these 
scenarios.    Having established these future cases, it will be straightforward to solve for 
the distribution on growth, α, after the current point on the price path, π', is estimated. 
 

The next step in our approach is to determine the long-run constant volatility, σ2/2κ.  We 
assume that the historic year-to-year price changes provide the best estimate of this term.  
We find the standard deviation of the natural logarithm (ln) of the year-to-year price 
change.  For example, using the yearly price data from Figure 2: Historical Average 
Yearly Prices for CAISO (adjusted to 2003 dollars) and a current price estimate of 
$49/MWh, we estimate a long-run constant volatility of 65%.xix   
 
Given the stream of expected spot prices as shown in Figure 3:  Forwards and Estimated 
Spot Prices, we have two remaining parameters to fit, the current point on long-run price 
path, π' and the reversion parameter, κ. Using our mean and variance expressions, we can 
write a likelihood for each expected price.  We can then use maximum likelihood 
estimation to determine π' and κ. 
 
The results of the model are shown below in Figure 5:  Price Distribution for Long-Run 
Prices.  These prices are shown in constant 2003 dollars.   
 

Figure 5:  Price Distribution for Long-Run Price 
 
In any given year, there is a 90% probability that the price will be below the 90% line and 
a 10% probability it will be below the 10% line.  Correspondingly, it is equally likely to 
be above or below the 50% line. 
 
What does this forecast tell us about electricity prices?  First, the short run uncertainty is 
quite high.  Even one year out, the 10-90% confidence bands cover a factor of three in 
prices.  Consequently, it would not be a shock if prices doubled or were halved from year 
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to year.  This is a direct reflection of the considerable year-to-year volatility that has been 
observed historically in the chosen market, and ties the forecast to the available financial 
data.  Second, the uncertainty grows only moderately over a longer time horizon, unlike 
the “expanding cones” that one typically sees with Geometric Brownian Motion and 
equity prices.  This is a direct reflection of the strength of reversion to the long-run 
resource costs, and ties the forecast to the long-term engineering data. 
 
Is this a good forecast per the criteria outlined above?  We think so.   

• The forecast is likely to show greater accuracy because we use all types of 
available data appropriately and a more sophisticated price dynamics model.   

• The forecast is likely to be well-calibrated without false accuracy because we 
have recognized the high short-run volatility evident in recent price history, as 
well as the long-run changes in electric power technology and regulation.   

• The model explicitly addresses the evolution of uncertainty over time, so that it is 
useful for both flexible and inflexible resources.   

• The model development process is efficient.  It requires time to meet and think 
creatively about the future, and time to gather and process available financial and 
engineering data.  But it does not require hundreds or thousands of runs of 
complex supply/demand models. 

Summary 

Estimation of long-run, 20 to 30 year, electricity prices is extremely important and 
difficult.  It is important because of the high cost and long lives of electric power 
resources.  It is difficult because of the many uncertainties that will determine future 
prices, and because of the lack of sufficient historical and forwards data.  The difficulty is 
further compounded when forecasters ignore part of the available information or 
unnecessarily limit their thinking about the future. 
 
We have presented a practical approach that addresses these problems.xx   

• Accuracy is improved by using all types of data and a flexible model of price 
dynamics.  We use historical prices, forwards prices, supply/demand modeling, 
and expert judgment.  The dynamic model of prices we use is logically sound and 
as simple as practical.  The key characteristics of the model are dynamic 
volatility, reversion to a long-run path, and uncertainty with regard to the long-run 
path.  In our experience if any of these are left out, illogical results that can be 
directly traced to the missing element occur.   

• Our emphasis on intense, open, and clear thinking about the future improves the 
estimation of short- and long-run variance (calibration).   

• The model is very useful in resource evaluation, producing both unconditional 
and conditional distributions on prices for option analysis, it is relatively easy to 
simulate, and it can be discretized to analyze options in a decision tree 
framework.   

• Finally, the modeling process is very efficient.   
The result is a better forecast.xxi 
 



                                                 
i California Legislative Analysts Office, Analysis of the 2002-03 Budget Bill, Department of Water 
Resources, California Energy Resource Scheduling (3860). 
ii Texas PUC, July 18, 2005, www.puc.state.tx.us/electric/maps/gentable.pdf 
iii Houston Business Journal, May 4, 2004. 
iv We assume that at any point in time forwards contracts and futures contracts for the same date will be 
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 We should note that this paper has not been a full presentation of our approach.  We limited our long-run 

price paths to three.  We would certainly suggest exploring and perhaps using more long-run price paths.  
We have not discussed fuel and electric price correlations.  Similar analyses can be applied to long-run fuel 
price forecasting.  Assuming that the probability distributions derived are the marginal distributions on 
electric and fuel prices, it is not difficult to add correlations to the analysis.  We have not discussed the 
estimation of within year prices.  We believe that this can be dealt with as a problem separate from long-
run yearly average price estimation. 
xxi Any errors in this paper are the sole responsibility of the authors.  The authors would like to thank Tom 
Parkinson of The Northbridge Group for very kindly commenting on an earlier draft. 


